

Research on Structural Test & Analysis Protocol: Progress and Plans

John S. Tomblin Waruna Seneviratne

National Institute for Aviation Research Wichita State University Wichita, KS

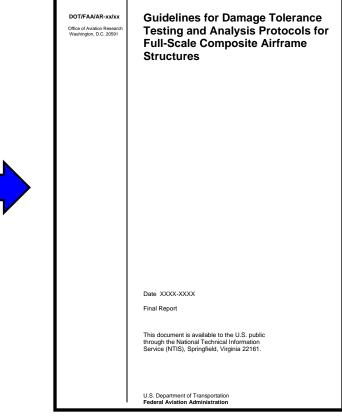
Commercial Aircraft Composite Repair Committee (CACRC) Meeting & Workshop for Composite Damage Tolerance & Maintenance

Amsterdam, Netherlands May 9-11, 2007

Research Program Objectives

Primary Objective

Demonstrate acceptable means of compliance for fatigue, damage tolerance and static strength substantiation of composite airframe structures


Secondary Objectives

- Evaluate existing analysis methods and building block database needs as applied to practical problems crucial to composite airframe structural substantiation
- Investigate realistic service damage scenarios and the inspection & repair procedures suitable for field practice

Goals of the Program

 Produce a guideline FAA document which demonstrates a "best practice" procedure for full-scale testing protocols for composite airframe structures with examples

Candidate Research Tasks

- 1. Load Enhancement Factor Approach and Fatigue Life Assessment
 - Various approaches which have been or are currently being used
 - Guidance on Cycle Truncation
 - Address Environmental Factors used during testing
 - Full-Scale Validation and Examples
- 2. Damage Tolerance and Repair Substantiation
 - Categories of damage
- 3. Analysis Methods
 - Define procedures necessary to support testing and building block approaches

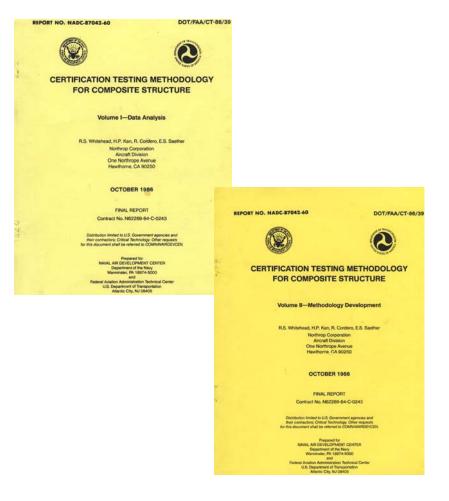
Transport Aircraft Applications

Wichita State University

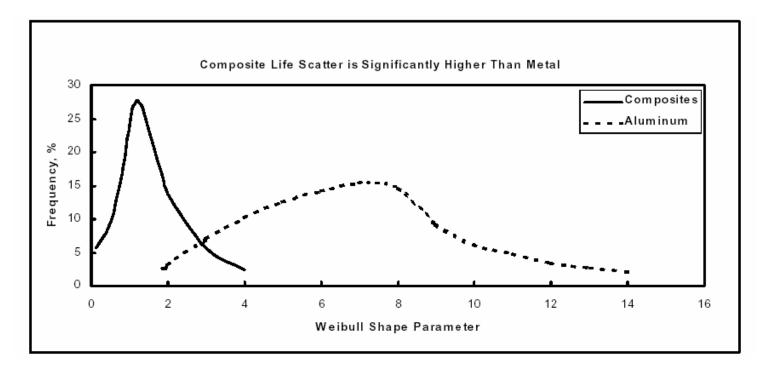
Other Applications of Advanced Materials

Main Working Group

- Federal Aviation
 Administration
 - Curtis Davies
 - FAA William J. Hughes Technical Center, NJ
 - Larry Ilcewicz
 - FAA/Seattle Aircraft Cert. Office
 - Lester Cheng
 - FAA-Small Airplane
 Directorate
 - Evangelina Kostopoulos
 - FAA ACO Chicago
 - David Ostrodka
 - FAA ACO Wichita
 - Peter Shyprykevich
 - Consultant

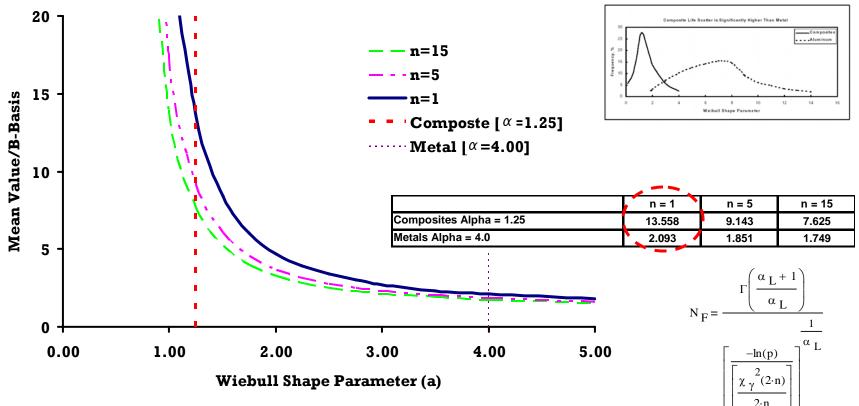


PLUS OTHER INDUSTRY PARTNERS


Load Enhancement Factor Approach and Fatigue Life Assessment

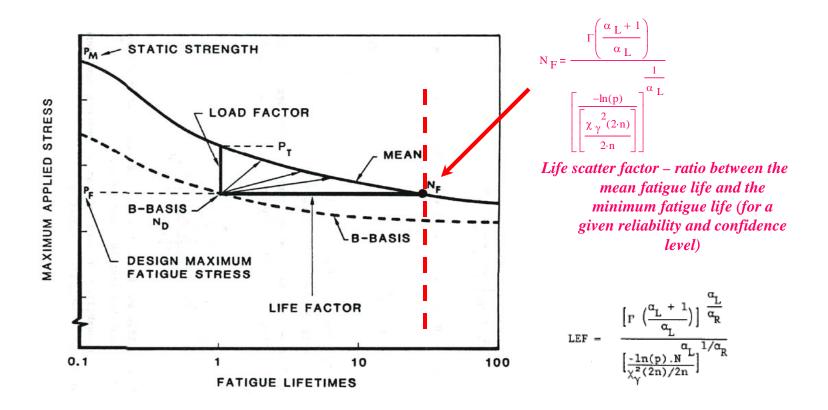
- Background most test programs reference the Navy/FAA reports by Whitehead, Kan, et. al. (1986) and follow that approach
- Most test programs have used the conclusions developed in this report regardless of design features, failure modes and/or materials
- EADS-CASA study used the same approach (2001) but redefined the shape factors

LEF - Overview of Methodology

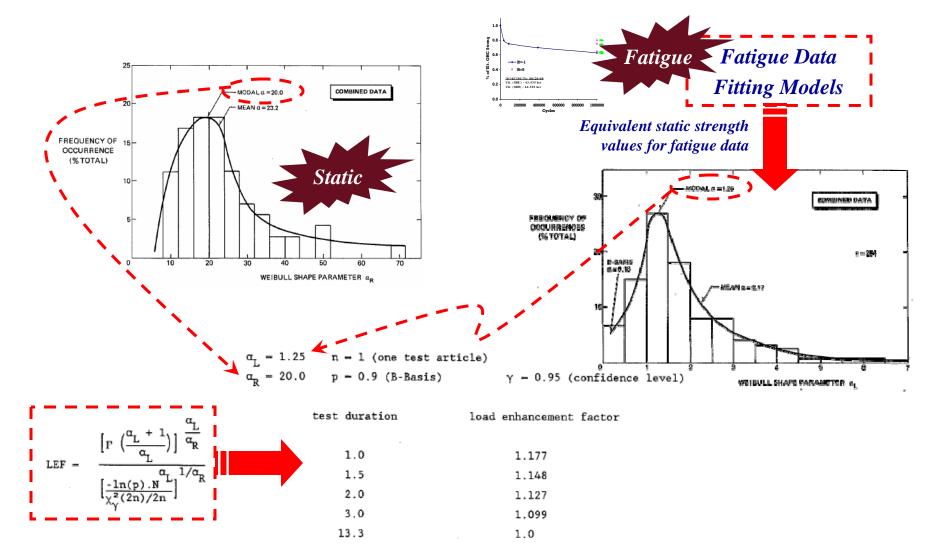


Comparison of graphite-epoxy and aluminum fatigue life scatter distributions

data was pooled on the basis that the life scatter is not significantly influenced by load level, loading mode, laminated layup, fatigue life and failure mode

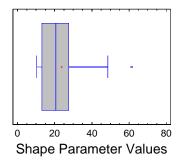

Life Factor Approach

 Structure is tested for additional fatigue life to achieve the *desired level of reliability*

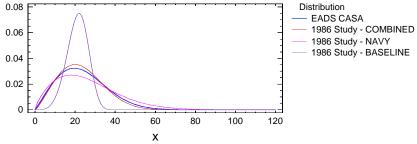

Load Enhancement

• Increase the applied loads in the fatigue tests so that the same level of reliability can be achieved with a shorter test duration

Load Enhancement Factor Approach

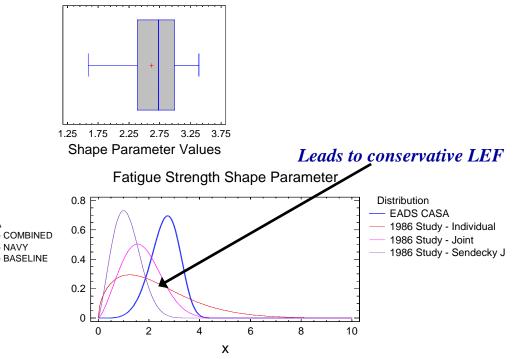



Load Enhancement Factor Approach


Comparisons of NAVY/FAA data and EADS CASA data

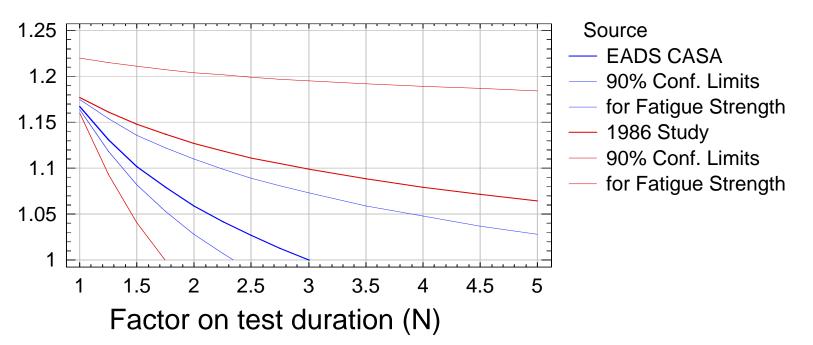
1986 study conservatively estimated static shape parameter at 20

EADS CASA Static Strength tests



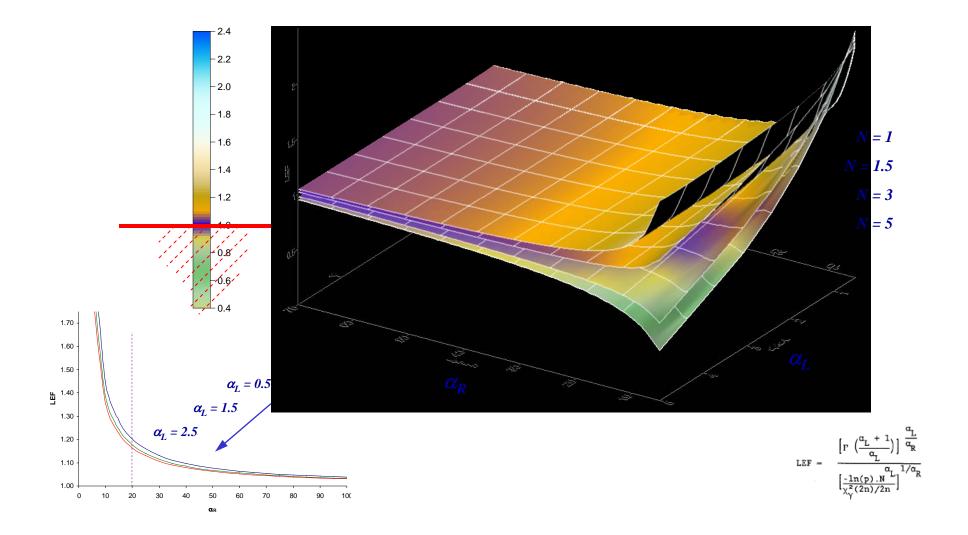
1986 study conservatively estimated fatigue shape parameter at 1.25

EADS CASA Fatigue Strength Tests



Load Enhancement Factor

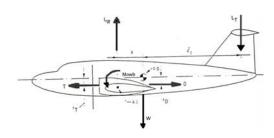
Comparisons of NAVY/FAA data and EADS CASA data


Load Enhancement Factors

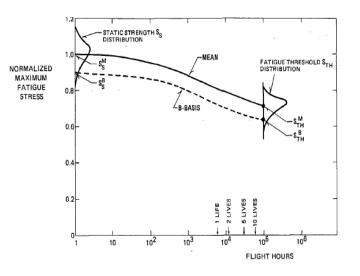
Confidence limits set based on fatigue strength only since the mean and mode static strength values seem stable

Load-Life Combined Approach

Task Research Objectives


- Generate data and guidelines for the generation of Weibull shape parameters for
 - Different material systems
 - Loading modes and geometries
 - Environments
 - Bonded joints (2 thicknesses)
 - Sandwich construction
 - Multiple R-ratios

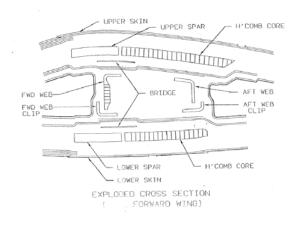
Develop shape parameters for different geometries, environments, layups, and loading modes

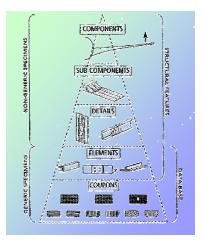


Data Development

- Use existing lamina and laminate data for static strength
- Static / Fatigue Loading
 - Notched Tension
 - Notched Compression
 - Bonded joints
 - Interlaminar shear
 - Sandwich construction
 - RTD and ETW

- Fatigue
 - Const. amplitude (5 Hz)
 - R-ratios
 - 0 (Fuselage)
 - -0.2, 5 (Wing)
 - -1 (Control Surface)

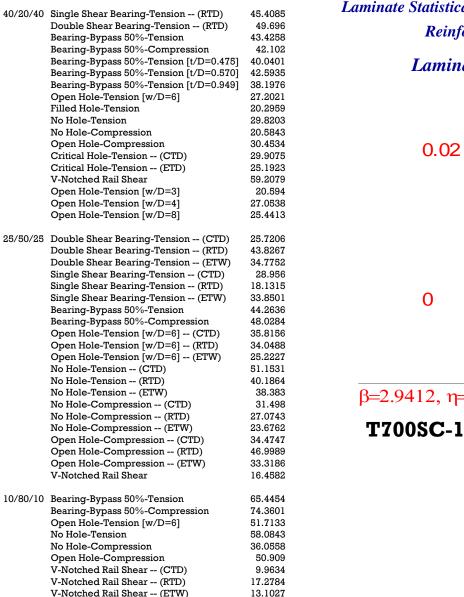


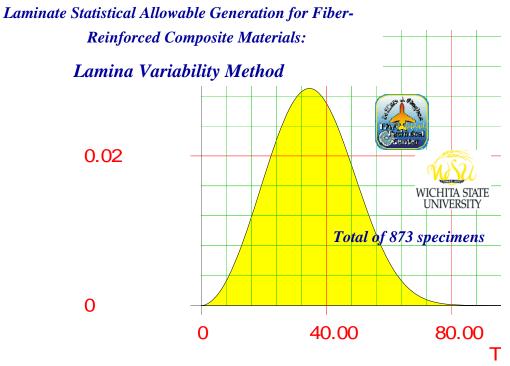


CYTEC AS4/E7K8 PW

Wichita State University

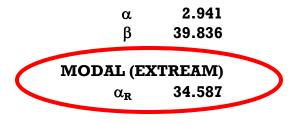
LEF Test Matrix

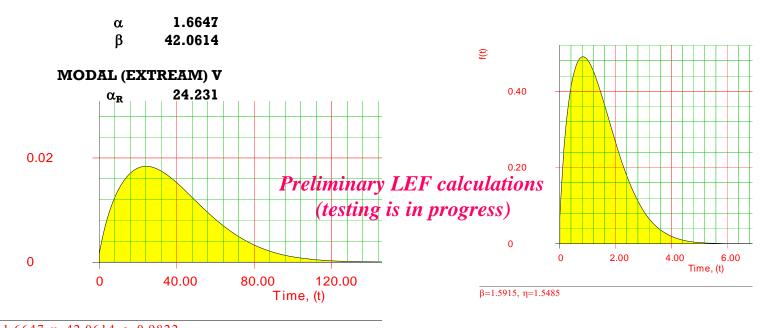

Laminate	Test Method	Loading Condition	Standard	Specimen Dimension s (wxL)	Static Test Environment		RTD - Cyclic Test R ratio (3 Stress Levels)			
					RTD	ETW	-0.2	0	-1	5
10/80/10 Laminate	Open-Hole	Tension	ASTM D5766	1.5x12"	6	6	- 18	18		18
		Comp.	ASTM D6484		6	6			18	
	Bonded Joint (t=0.01-inch)		Modified ASTM D3165	1.5x12"	6	6	18		18	
	Bonded Joint (t=0.06-inch)				6	6	18		18	
	Double Notch Compression	Interlaminar Shear	ASTM D3846	1.5x12"	6	6	18		18	
	CAI [20	CompBVID	ASTM	4x6"						10
	plies] CAI [40	CompVID CompBVID	D7137 ASTM		5					18
	plies]	CompVID	D7137	4x6"	6					18
	Open-Hole	CompRTD	ASTM D6484	1.5x12"					18	
		CompETW							6	
25/50/25	CAI	Comp BVID/RTD	ASTM D7137	4x6"						18
Laminate		Comp VID/RTD			6					18
		Comp BVID/ETW								6
		Comp VID/ETW								18
40/20/40	CAI	CompBVID	ASTM	4x6"	0					10
Laminate	Open-Hole	CompVID	D7137 ASTM D6484	1.5x12"	6				10	18
		CompRTD			6				18	
		CompETW			6				6	
	TAI	Shear - BVID/RTD	Modified ASTM D6148	4x10"						18
All 45's		Shear - VID/RTD			6					18
		Shear - BVID/ETW								6
		Shear - VID/ETW								18
Sandwich	3-Ply Facesheet w/ 0.25-inch Core	4-Point Bend	ASTM C393	3x8"	6	6		18		



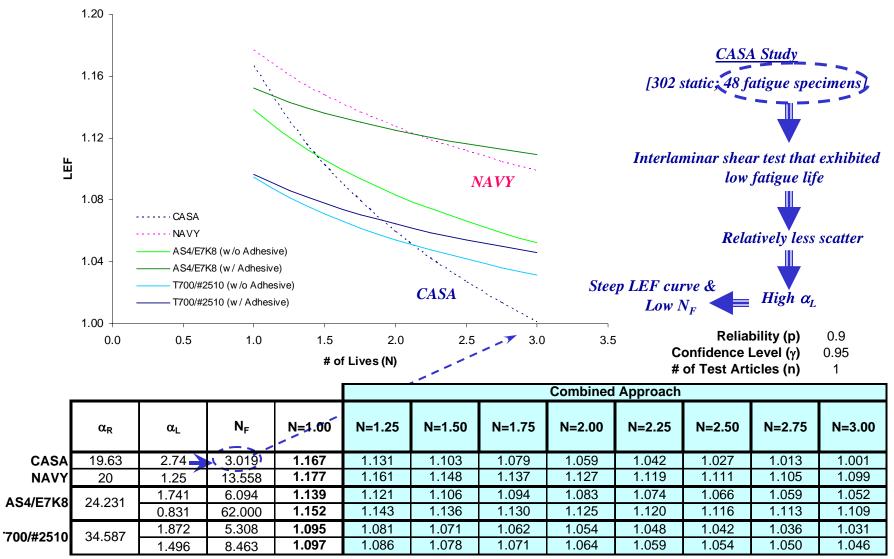
T700SC-12K-50C/#2510 -Plain Weave Fabric

NATIONAL INSTITUTE FOR AVIATION RESEARCH

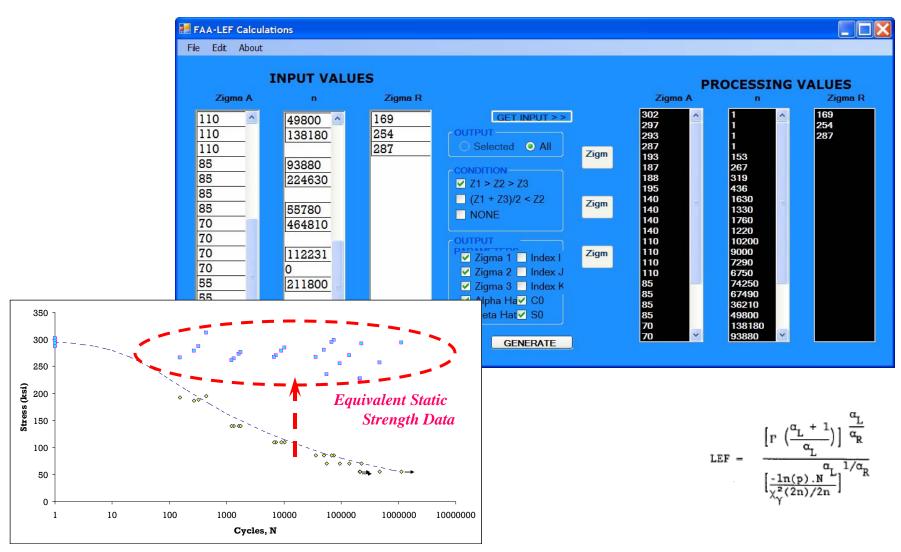

Wichita State University


β=2.9412, η=39.8364, ρ=0.9955

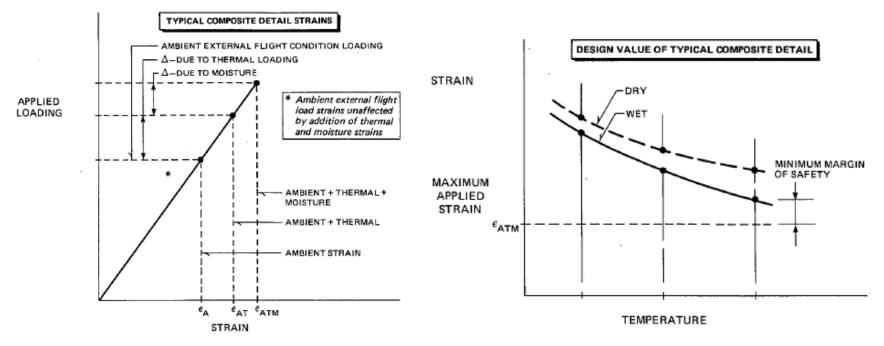
T700SC-12K-50C/#2510 -Plain Weave Fabric


LEF - AS4/E7K8 & T700/#2510

$\beta = 1.6647, \eta = 42.0614, \rho = 0$.9822					
	α_{R}	α_L	N _F	LEF		Without DOT/FAA/AR-03/56
N (test duration) = 1	19.63	2.74	3.019	1.167	CASA	adhesive fatigue data
	20	1.25	13.558	1.177	NAVY	
N (# of test articles) = 1	24.231	1.741 🗲	6:094	1.139- -	AS4/E7K8	
	24.231	0.831 <	62.000	1.152		
	34.587	1.872	5.308	1.095	T700/#2510	With DOT/FAA/AR-03/56 adhesive fatigue data
	34.307	1.496 🗸 -	8.463	1.097		aanesive juligue aala



Fatigue Life Shape Parameter


LEF - Automation

Environmental Enhancement Factor

- Develop guidelines for the development of environmental enhancement factors for static strength loading
- Use data developed at lamina, laminate, element and subcomponent to demonstrate application

Damage Tolerance Substantiation PROGRAM OBJECTIVES

- Provide guidance documentation as to industry "best practices" to damage tolerance substantiation in full-scale test protocols
 - Address different damage categories
 - Address Allowable Damage Limit (ADL)
 - Address damage growth threshold and definition of Critical Damage Threshold (CDT)
 - Assess repairs and repair's repeated load capability and address Repairable Damage Limit (RDL)

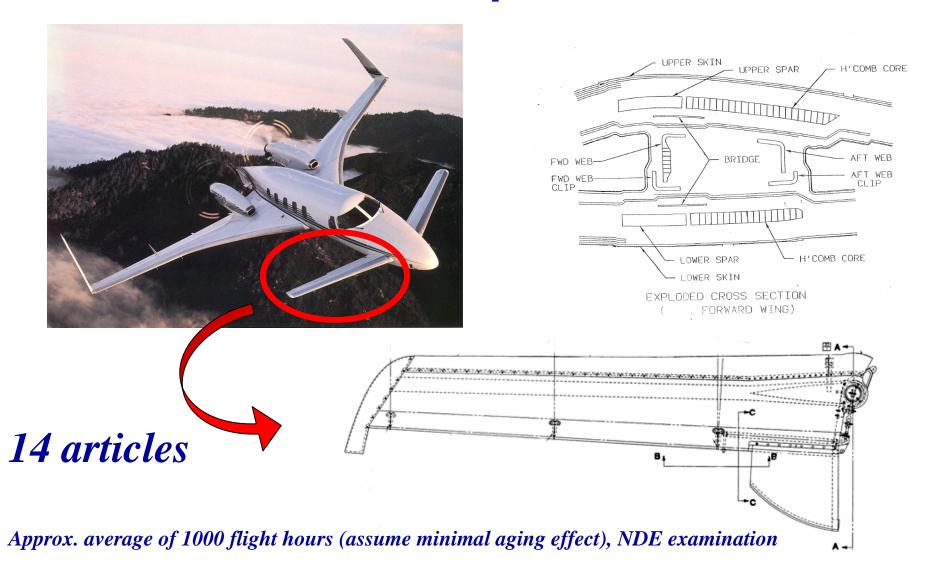
Categories of Damage & Defect Considerations for Primary Composite Aircraft Structures

Category	Examples	Safety Considerations (Substantiation, Management)		
<u>Category 1</u> : Damage that may go undetected by field inspection methods (or allowable defects)	BVID, minor environmental degradation, scratches, gouges, <a>	Demonstrate reliable service life Retain Ultimate Load capability Design-driven safety		
<u>Category 2</u> : Damage detected	VID (ranging small to large),	Demonstrate reliable inspection		
by field inspection methods @	mfg. defects/mistakes, major	Retain Limit Load capability		
specified intervals (repair scenario)	environmental degradation	Design, maintenance, mfg.		
<u>Category 3</u> : Obvious damage	Damage obvious to operations in	Demonstrate quick detection		
detected within a few flights by	a "walk-around" inspection or	Retain Limit Load capability		
operations focal (repair scenario)	due to loss of form/fit/function	Design, maintenance, operations		
<u>Category 4</u> : Discrete source	Damage in flight from events	Defined discrete-source events		
damage known by pilot to limit	that are obvious to pilot (rotor	Retain "Get Home" capability		
flight maneuvers (repair scenario)	burst, bird-strike, lightning)	Design, operations, maintenance		
<u>Category 5</u> : Severe damage	Damage occurring due to rare	Requires new substantiation		
created by anomalous ground or	service events or to an extent	Requires operations awareness		
flight events (repair scenario)	beyond that considered in design	for safety (immediate reporting)		

Work Tasks

- Fatigue & damage tolerance substantiation after static strength substantiation on a separate test article
- Fatigue, static strength and damage tolerance substantiation using the same test article
- One of the above but with variations in the loading, and/or severity of damage to demonstrate an ability to measure early warnings of failure in the test (and predict a failure)
- Supporting data needs
 - Static load cases and repeated loading envelops
 - Test fixture design, fabrication & setup and test article instrumentation
 - Building block testing to support analysis groups
 - LEF & truncation limits for repeated load testing (shared databases)
 - Environmental factors for residual strength testing

Note: Test plans consider damages ranging from allowable damage limit (ADL) to critical damage threshold (CDT) and repairs up to the repairable damage limit (RDL)


Validation and Test Examples on Full-Scale Structures

- Need multiple, representative full-scale structures for testing
 - Demonstrate effects in multiple full-scale tests
 - Characterize load versus life effect on multiple fullscale articles
 - Damage Tolerance substantiation articles for various categories of damage
 - Multiple repair substantiation articles
- Problem ??? cost of multiple structures for tests

Wichita State University

Full-Scale Specimens

Wichita State University

Full-Scale Specimens

FAA programs (assessing any age effects as well as DT), NDE examination Currently 1 article is planned (documentation example)

Wichita State University

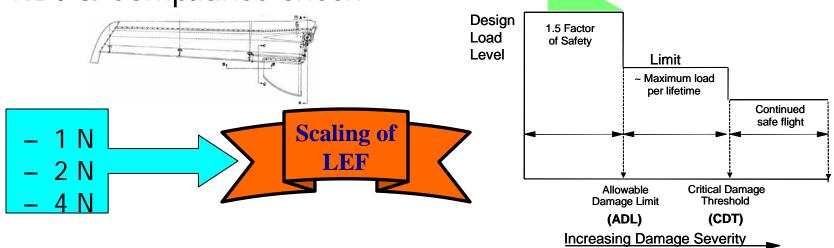
Full-Scale Specimens

Liberty XL2

- Two fuselage tests are planned ٠
- Structure is sandwich ٠ construction / minimum gage

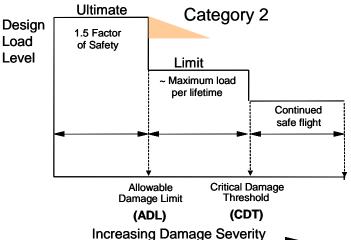
Additional Full-Scale Tests

- Using the FASTER facility at the FAA Technical Center (Atlantic City, NJ)
- Fuselage loading tension loading including pressure
- Test articles are representative of general aviation fuselage (sandwich construction)

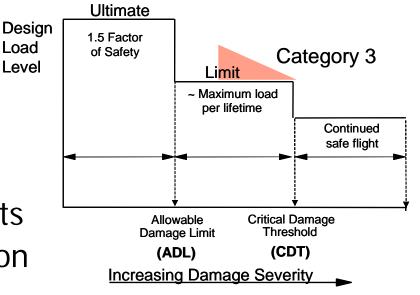

Category 1

Wichita State University

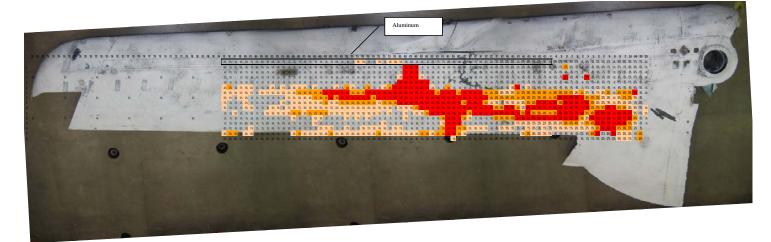
Characterize LEF Baseline Structural State


- Category 1 damage state BVID, minor environmental degradation, manufacturing defects, minor service damage
- Retain ultimate load and reliable service life
- Constant amplitude repeated loading (N)
- N and load levels selected to produce fatigue failures
- Compression dominant
- NDI & Compliance check

Damage Tolerance Testing

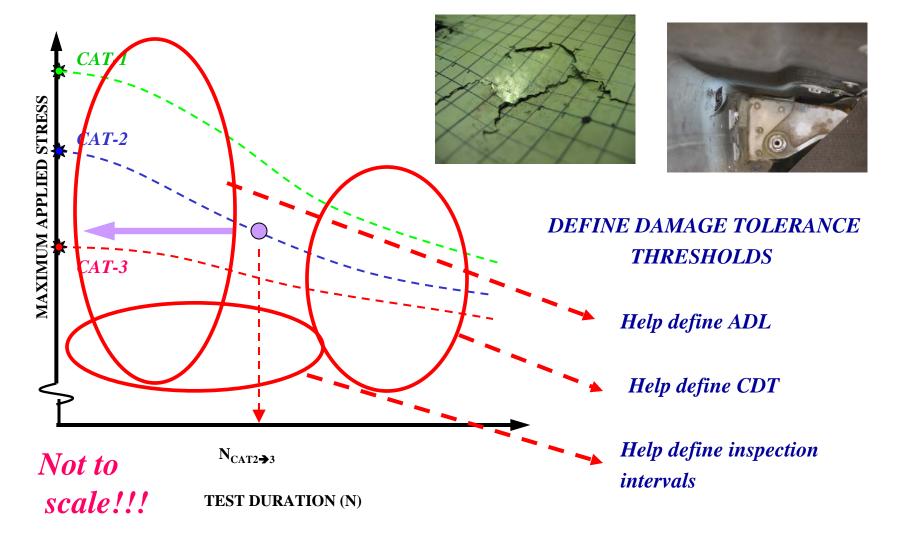

- Category 2 Damage VID, major environmental degradation
- Demonstrate reliable inspection and define intervals
- Compression
- Impact Damage
- Spectrum Loading
- Retain Limit Load capability
- Demonstrate no or minor growth under repeated loading (inspection interval)

Damage Tolerance Testing


- Category 3 Damage damage obvious to operator – should be detected within a few flights
- Demonstrate quick detection
- Define damage threshold
- Compression Loading / Impact Damage
- Spectrum Loading (LIMITED CYCLES)
- Retain Limit Load capability

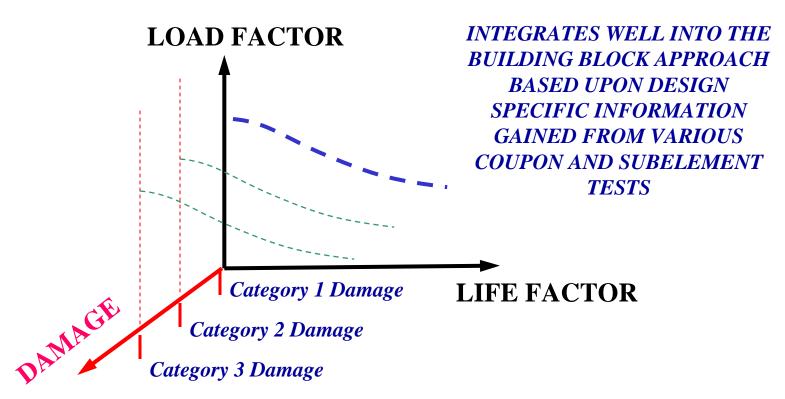
Example of Test Results

Static Strength Canard #2 – Failure Analysis



Repair Substantiation

- Demonstrate repair for category 2 and 3 damage states
- Work with OEM to develop guidelines for Repairable Damage Limit (RDL)
- Demonstrate restoration of full service life under spectrum loading
- Demonstrate restoration of ultimate load



Enhanced Combined Approach [Life-Load-Damage]

Enhanced Combined Approach [Life-Load-Damage]

PROVIDES OPPORTUNITY TO FURTHER INTEGRATE THE CERTIFICATION APPROACH

Contact Information

John Tomblin National Institute for Aviation Research 1845 Fairmount Wichita, KS 67260-0093 ph : (316) 978-5234 fx : (316) 978-3175 john.tomblin@wichita.edu